不需平行語料而基於共振峰與線頻譜頻率映對之語者特質轉換系統 (A Voice Conversion System based on Formant and LSF Mapping without Using Parallel Corpus) [In Chinese]

نویسندگان

  • Chia-Yu Wu
  • Hsiao-Chuan Wang
چکیده

Voice conversion has been used in many applications. The methods based on vector quantization codebook and Gaussian mixture models need dynamic time warping on parallel sentence corpus for generating mapping functions. Recent study tries to use less training data, and even without parallel sentence corpus. This paper presents a voice conversion method without using parallel sentence corpus. It applies the formant mapping and line spectral frequency mapping to accomplish a voice conversion system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

基於音段式LMR 對映之語音轉換方法的改進 (Improving of Segmental LMR-Mapping Based Voice Conversion Methods) [In Chinese]

把一個來源語者(source speaker)的語音轉換成另一個目標語者(target speaker)的語音,這 種處理稱為語音轉換(voice conversion)[1, 2, 3],語音轉換可應用於銜接語音合成處理, 以獲得多樣性的合成語音音色。去年我們曾嘗試以線性多變量迴歸(linear multivariate regression, LMR)來建構一種頻譜對映(mapping)的機制[4],然後用於作語音轉換,希望 藉以改進傳統上基於高斯混合模型(Gaussian mixture model, GMM)之頻譜對映機制[3] 常遇到的一個問題,就是轉換出的頻譜包絡(spectral envelope)會發生過度平滑(over smoothing)的現象。我們經由實驗發現,音段式(segmental) LMR 頻譜對映機制不僅在平 均轉換誤差上可以比傳統 GMM 頻譜對映機...

متن کامل

基於離散倒頻譜之頻譜包絡估計架構及其於語音轉換之應用 (A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Application to Voice Transformation) [In Chinese]

除了 LPC 之外,過去也有幾個以倒頻譜(cepstrum)為基礎的頻譜包絡估計方法被提 出,最簡單的一個是倒頻譜平滑法[1],此法只保留倒頻譜係數的前幾個,而把後面的 係數全部砍除(即令為 0 值),再作離散傅利葉轉換(discrete Fourier transform , DFT),就 可得到平滑的頻譜曲線,如圖 1 裡下方的那一條平滑曲線,很明顯地這樣的一條頻譜曲 線並不是頻譜包絡,因為它走在原始 DFT 頻譜的波峰與波谷之間,而不是沿著波峰行 走。因此,Imai 和 Abe 兩人提出一個以倒頻譜為基礎再作改進的方法[3, 4] ,稱為 true envelope 估計法,然而此法的計算量很大而缺乏效率。另外,Galas 和 Rodet 兩人提出 以離散倒頻譜(discrete cepstrum )來估計頻譜包絡的觀念[5],後來 Cappé 和 Moulines 兩 人則提...

متن کامل

強健性語音辨識中分頻段調變頻譜補償之研究 (A Study of Sub-band Modulation Spectrum Compensation for Robust Speech Recognition) [In Chinese]

雖然語音科技進步迅速,但自動語音辨識仍是一門值得繼續研究開發的課題。因為 目前多數的語音辨識系統應用於不受干擾的安靜環境,雖然能得到相當滿意的辨識效 果,但若將其應用於實際的環境中,語音訊號往往會因為環境雜訊的影響,導致辨識效 能有明顯地衰減,發展多年的強健性技術即是針對此項缺點作改進。 在諸多強健性技術中,有一類方法為對語音特徵作統計上的正規化,傳統上, 這些方法都是對全頻段的語音特徵時間序列做正規化處理,然而,在分析此類方法的效 能上,通常是以其調變頻譜的正規化程度作為效能的依據,因此,如果直接在語音特徵 之調變頻譜上作正規化,應亦可達到不錯的效果。另外,由於不同頻率的調變頻率成 份具有不相等的重要性,但是傳統之特徵時間序列正規化法相對忽略了此性質,基於這 些觀察,在本論文中,我們提出了一系列的分頻段調變頻譜統計正規化法,此類方法可 以分別正規化不同頻段的統計特性,進而提升語音特...

متن کامل

雜訊環境下應用線性估測編碼於特徵時序列之強健性語音辨識 (Employing linear prediction coding in feature time sequences for robust speech recognition in noisy environments) [In Chinese]

近幾十年來,無數的學者先進對於此雜訊干擾問題提出了豐富眾多的演算法,略分成兩 大類別:強健性語音特徵參數表示法(robust speech feature representation)與語音模型調適 法(speech model adaptation),第一類別之方法主要目的在抽取不易受到外在環境干擾下 而失真的語音特徵參數,或從原始語音特徵中儘量削減雜訊造成的效應,比較知名的方 法有:倒頻譜平均值與變異數正規化法 (cepstral mean and variance normalization, CMVN)[1]、倒頻譜統計圖正規化法(cepstral histogram normalization, CHN)[2]、倒頻譜平 均值與變異數正規化結合自動回歸動態平均濾波器法(cepstral mean and variance normalization plus auto-r...

متن کامل

最小變異數調變頻譜濾波器於強健性語音辨識之研究 (A Study of Minimum Variance Modulation Filter for Robust Speech Recognition) [In Chinese]

本論文所探討的是語音特徵強健性技術,藉此改善雜訊環境下語音辨識的效能。我們利 用原始最小變異數調變濾波器法設計的環境失真目標函數,應用至求取濾波器之最佳頻 率響應上,進而發展出兩種特徵時間序列濾波器求取演算法,分別為基於最小變異數準 則之最小平方頻譜擬合法 (MV-LSSF)及基於最小變異數準則之強度頻譜內插法 (MV-MSI)。在這兩種方法中,利用我們所求得的濾波器之最佳頻率響應取代原始最小 平方頻譜擬合法(LSSF)與強度頻譜內插法(MSI)中所使用的濾波器,來得到欲逼近的目 標功率頻譜密度。從 Aurora-2 連續數字資料庫的實驗結果證實,這兩種基於最小變異 數準之調變頻譜正規化法,在各種雜訊環境下都優於傳統的兩種調變頻譜正規化法,而 得到更佳的辨識精確度。與基礎實驗結果相比較,MV-LSSF 與MV-MSI 所達到之相對 錯誤降低率分別為在 55.41%與 51.20%,顯...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009